Sgt1 acts via an LKB1/AMPK pathway to establish cortical polarity in larval neuroblasts.
نویسندگان
چکیده
Drosophila neuroblasts are a model system for studying stem cell self-renewal and the establishment of cortical polarity. Larval neuroblasts generate a large apical self-renewing neuroblast, and a small basal cell that differentiates. We performed a genetic screen to identify regulators of neuroblast self-renewal, and identified a mutation in sgt1 (suppressor-of-G2-allele-of-skp1) that had fewer neuroblasts. We found that sgt1 neuroblasts have two polarity phenotypes: failure to establish apical cortical polarity at prophase, and lack of cortical Scribble localization throughout the cell cycle. Apical cortical polarity was partially restored at metaphase by a microtubule-induced cortical polarity pathway. Double mutants lacking Sgt1 and Pins (a microtubule-induced polarity pathway component) resulted in neuroblasts without detectable cortical polarity and formation of "neuroblast tumors." Mutants in hsp83 (encoding the predicted Sgt1-binding protein Hsp90), LKB1, or AMPKα all show similar prophase apical cortical polarity defects (but no Scribble phenotype), and activated AMPKα rescued the sgt1 mutant phenotype. We propose that an Sgt1/Hsp90-LKB1-AMPK pathway acts redundantly with a microtubule-induced polarity pathway to generate neuroblast cortical polarity, and the absence of neuroblast cortical polarity can produce neuroblast tumors.
منابع مشابه
Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity.
Germline mutations of the LKB1 gene are responsible for the cancer-prone Peutz-Jeghers syndrome (PJS). LKB1 encodes a serine-threonine kinase that acts as a regulator of cell cycle, metabolism and cell polarity. The majority of PJS missense mutations abolish LKB1 enzymatic activity and thereby impair all functions assigned to LKB1. Here, we have investigated the functional consequences of recur...
متن کاملLKB1 and AMPK maintain epithelial cell polarity under energetic stress
LKB1 is mutated in both familial and spontaneous tumors, and acts as a master kinase that activates the PAR-1 polarity kinase and the adenosine 5'monophosphate-activated kinase (AMPK). This has led to the hypothesis that LKB1 acts as a tumor suppressor because it is required to maintain cell polarity and growth control through PAR-1 and AMPK, respectively. However, the genetic analysis of LKB1-...
متن کاملCaenorhabditis elegans PIG-1/MELK acts in a conserved PAR-4/LKB1 polarity pathway to promote asymmetric neuroblast divisions.
Asymmetric cell divisions produce daughter cells with distinct sizes and fates, a process important for generating cell diversity during development. Many Caenorhabditis elegans neuroblasts, including the posterior daughter of the Q cell (Q.p), divide to produce a larger neuron or neuronal precursor and a smaller cell that dies. These size and fate asymmetries require the gene pig-1, which enco...
متن کاملLKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism.
Research on the LKB1 tumor suppressor protein mutated in cancer-prone Peutz-Jeghers patients has continued at a feverish pace following exciting developments linking energy metabolism and cancer development. This review summarizes the current state of research on the LKB1 tumor suppressor. The weight of the evidence currently indicates an evolutionary conserved role for the protein in the regul...
متن کاملMicrotubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts.
Cortical polarity regulates cell division, migration, and differentiation. Microtubules induce cortical polarity in yeast, but few examples are known in metazoans. We show that astral microtubules, kinesin Khc-73, and Discs large (Dlg) induce cortical polarization of Pins/Galphai in Drosophila neuroblasts; this cortical domain is functional for generating spindle asymmetry, daughter-cell-size a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental biology
دوره 363 1 شماره
صفحات -
تاریخ انتشار 2012